Skip to content

krishgoel/chronocept-baseline-models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Chronocept Baseline Models

Publication: Chronocept: Instilling a Sense of Time in Machines
Authors: Krish Goel, Sanskar Pandey, KS Mahadevan, Harsh Kumar, and Vishesh Khadaria

Dataset: huggingface/krishgoel/chronocept

This repository contains baseline implementations for Chronocept, the world's first benchmark for modeling validity of textual information as continuous probability distributions over time. The models predict three parameters (location ξ, scale ω, skewness α) that characterize the temporal relevance of textual information using a skew-normal distribution, over a logarithmically transformed time axis.

DataLoader Implementation

The DataLoader class utils/dataloader.py is used to load and preprocess the data. It supports multiple embedding methods and data splits.

Parameters

  • benchmark (Literal["benchmark_1", "benchmark_2"]):
    Benchmark identifier.

  • split ("train" | "validation" | "test" | List[str] | None, default=None):
    Which data splits to load. If None, all splits are loaded.

  • embedding (str, default="bert_cls"):
    Embedding method:

    • "bert_cls": CLS token from BERT.
    • "bert_full": Mean pooling over BERT tokens.
    • "bert_sequential": Full token sequence from BERT.
    • "sbert": Sentence-BERT (all-MiniLM-L6-v2).
    • "tfidf": TF-IDF (max 512 features).
    • "glove": Averaged GloVE embeddings.
  • max_len (int, default=128):
    Maximum sequence length for BERT-based tokenization.

  • include_axes (bool, default=False):
    Whether to include the 8 temporal axes with the parent_text. Final input = parent embedding + flattened axes.

  • shuffle_axes (bool, default=False):
    Shuffle the 8 axes per sample (only if include_axes=True).

  • normalization ("zscore" | "minmax" | "none" | None, default="zscore"):
    Target value normalization:

    • "zscore": Zero mean, unit variance.
    • "minmax": Scale to [0, 1].
    • "none" or None: No normalization.
  • log_scale (float, default=1.1):
    Base for logarithmic transformation of target values. If set, log(y) / log(log_scale) is applied.

Usage Example

from utils import DataLoader

# Initialize loader
dl = DataLoader(
    benchmark="benchmark_1",
    split=None,  # Loads all splits
    embedding="bert_cls",
    max_len=128,
    include_axes=True,
    normalization="zscore"
)

# Preprocess data
data = dl.preprocess()  # Returns dict with all splits if split=None
X_train, y_train = data["train"]
X_valid, y_valid = data["validation"]
X_test, y_test = data["test"]

Performance Statistics

Benchmark I (1254 samples)

Baseline MSE MAE NLL
DEBERTA-V3 695.7505 14.8318 -1.3404 9.9973
Z DISTILBERT 737.3157 15.3509 -1.5092 11.3089
MT-DNN 108.3768 5.9425 0.0314 4.5117
ROBERTA 909.5181 17.2330 -1.8687 15.2214
SBERT-BILSTM 171.7044 8.5698 -2.3193 4.4084
SBERT-FFNN 155.8747 7.9780 -2.0203 4.3769

Benchmark II (524 samples)

Baseline MSE MAE NLL
DEBERTA-V3 544.5860 13.7358 -2.7730 11.6107
Z DISTILBERT 640.2664 14.7484 -3.0546 13.6647
MT-DNN 64.5708 4.5253 -0.0183 4.1865
ROBERTA 748.8589 16.0097 -3.5666 15.2253
SBERT-BILSTM 107.4771 6.0472 -1.1621 4.1373
SBERT-FFNN 153.2178 8.5744 -6.3268 3.9842

Note: All metrics are computed on Z-score normalized targets on the test set.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Citation

If you use Chronocept in your work, please cite the following:

@misc{goel2025chronocept,
    title={Chronocept: Instilling a Sense of Time in Machines}, 
    author={Krish Goel and Sanskar Pandey and KS Mahadevan and Harsh Kumar and Vishesh Khadaria},
    year={2025},
    eprint={2505.07637},
    archivePrefix={arXiv},
    primaryClass={cs.CL},
    url={https://arxiv.org/abs/2505.07637}, 
}

About

The official baseline implementations for Chronocept

Topics

Resources

License

Stars

Watchers

Forks

Contributors 5