This project analyzes the pitch (fundamental frequency) and intensity (loudness) of audio recordings using Parselmouth (Praat) and computes additional audio features via librosa. It provides visualizations and extracts metrics such as MFCCs, spectral centroid, and spectral bandwidth.
- Extract and plot pitch (F0) and intensity contours using Parselmouth
- Compute additional audio features with librosa:
- Mel-Frequency Cepstral Coefficients (MFCCs)
- Spectral Centroid
- Spectral Bandwidth
- Visualize analyses using matplotlib
git clone https://github.com/<username>/<repository>.git
cd <repository>python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activatepip install -r requirements.txtIf you don’t have a requirements.txt, install manually:
pip install numpy matplotlib parselmouth librosa soundfile jupyter-
Place your audio file in the project root or specify its path in the notebook. Example files:
/content/Audio for conversation conv_01k0p7nybafrath2av1gy1cxkx.mp3your_audio_file.mp3
-
Launch Jupyter Notebook:
jupyter notebook
-
Open
Pitch_and_intesity_analysis.ipynband run all cells. -
If needed, update the audio file path in the first code cell:
audio_path = "your_audio_file.mp3"
- Pitch contour over time
- Intensity (dB) contour over time
- MFCC heatmap
- Spectral centroid and bandwidth graphs
- Python 3.8+
- numpy
- matplotlib
- parselmouth
- librosa
- soundfile
- Jupyter Notebook
Contributions are welcome! Please open an issue or submit a pull request.
This project is licensed under the MIT License.
For questions or feedback, contact Your Name.