This repository contains Lean 4 proofs of the isoperimetric inequality, Brunn-Minkowski inequality, and Prékopa-Leindler inequality, following this blog post by Terence Tao.
The results proved are:
def PLConditions (n : ℕ) (θ : ℝ) (f g h : (Fin n → ℝ) → ENNReal) : Prop :=
0 < θ ∧ θ < 1 ∧
Measurable f ∧ Measurable g ∧ Measurable h ∧
(∀ x y, (f x) ^ (1 - θ) * (g y) ^ θ ≤ h (x + y))
theorem prekopa_leindler
{d : ℕ} {θ : ℝ} {f g h : (Fin (d + 1) → ℝ) → ENNReal}
(hθfgh : PLConditions (d + 1) θ f g h)
: ENNReal.ofReal ((1 - θ) ^ ((d + 1) * (1 - θ)) * θ ^ ((d + 1) * θ))⁻¹
* (∫⁻ x, f x) ^ (1 - θ) * (∫⁻ x, g x) ^ θ ≤ ∫⁻ x, h x := ...
theorem brunn_minkowski
{d : ℕ} {A B : Set (Fin (d + 1) → ℝ)}
(hA_nonempty : A.Nonempty) (hA_measurable : MeasurableSet A)
(hB_nonempty : B.Nonempty) (hB_measurable : MeasurableSet B)
(hAB_measurable : MeasurableSet (A + B))
: volume A ^ ((d : ℝ) + 1)⁻¹ + volume B ^ ((d : ℝ) + 1)⁻¹
≤ volume (A + B) ^ ((d : ℝ) + 1)⁻¹ := ...
theorem isoperimetric_inequality
{d : ℕ} {ε : ℝ} (hε : ε > 0) {A : Set (EuclideanSpace ℝ (Fin (d + 1)))}
(hA_nonempty : A.Nonempty) (hA_measurable : MeasurableSet A) (hA_finite : volume A ≠ ⊤)
: (d + 1) * (volume A) ^ (1 - ((d : ℝ) + 1)⁻¹)
* volume (Metric.ball (0 : EuclideanSpace ℝ (Fin (d + 1))) 1) ^ ((d : ℝ) + 1)⁻¹
≤ (volume (A + Metric.ball 0 ε) - volume A) / ENNReal.ofReal ε := ...