A Streamlit-based web application that analyzes sports betting data using RSS feeds and Google Gemini AI to provide intelligent betting insights.
- RSS Feed Processing: Automatically scrapes and parses sports odds from RSS feeds
- AI-Powered Analysis: Uses Google Gemini AI to analyze sports data and generate betting insights
- Interactive Dashboard: Real-time data visualization with charts and statistics
- Data Management: Export data to CSV, backup/restore functionality, and data cleanup tools
- Responsive UI: Modern, mobile-friendly interface built with Streamlit
- Python 3.8 or higher
- Google Gemini API key
- RSS feed URLs for sports data
- Double-click
launch.bat- This will automatically:- Check Python installation
- Install required dependencies
- Create config template if needed
- Launch the application
-
Install Python dependencies:
pip install -r requirements.txt
-
Configure your API key:
- Copy
config.env.exampletoconfig.env - Add your Gemini API key:
GEMINI_API_KEY=your_api_key_here
- Copy
-
Launch the application:
streamlit run app.py
Create a config.env file in the project root:
# Required: Your Google Gemini API key
GEMINI_API_KEY=your_api_key_here
# Optional: Debug mode
DEBUG=false
# Optional: Log level
LOG_LEVEL=INFOAdd your RSS feed URLs in the Settings page of the application or modify config.py:
DEFAULT_RSS_FEEDS = [
"https://example.com/sports-feed-1",
"https://example.com/sports-feed-2"
]STREAMLIT_MIGRATION/
├── app.py # Main Streamlit application
├── config.py # Configuration management
├── requirements.txt # Python dependencies
├── config.env # Environment variables (create this)
├── launch.bat # Windows launcher script
├── launch.ps1 # PowerShell launcher script
├── services/ # Core services
│ ├── rss_service.py # RSS feed processing
│ ├── ai_service.py # Google Gemini AI integration
│ └── data_service.py # Data storage and management
├── utils/ # Utility functions
│ └── helpers.py # Helper functions and charts
└── data/ # Data storage directory
- View real-time sports data and statistics
- Monitor RSS feed status and data freshness
- Access quick actions for data management
- Browse all collected RSS data
- Filter and search through entries
- Export data to CSV format
- Generate AI-powered betting insights
- Analyze specific sports events
- View analysis history and recommendations
- Configure RSS feed URLs
- Manage API keys and settings
- Data backup and restore options
-
"No module named 'streamlit'"
- Run:
pip install -r requirements.txt
- Run:
-
API key not found
- Ensure
config.envexists withGEMINI_API_KEY=your_key
- Ensure
-
RSS feeds not loading
- Check feed URLs in Settings
- Verify internet connection
- Check feed format compatibility
-
Data not persisting
- Ensure
data/directory exists - Check file permissions
- Ensure
Run the test script to verify setup:
python test_app.py- New Services: Add to
services/directory - New Utils: Add to
utils/directory - UI Changes: Modify
app.pyand add to appropriate page
The application expects RSS feeds with sports odds data. Each entry should include:
- Title/description with team names
- Odds information (if available)
- Timestamp
- Source information
streamlit run app.py --server.port 8501- Use Streamlit Cloud for easy deployment
- Set environment variables in deployment platform
- Ensure proper API key security
- Fork the repository
- Create a feature branch
- Make your changes
- Test thoroughly
- Submit a pull request
This project is for educational and personal use. Please ensure compliance with local gambling laws and regulations.
For issues or questions:
- Check the troubleshooting section
- Review the configuration
- Test with the provided test script
- Check Streamlit documentation for framework-specific issues