Skip to content

Rtur2003/CrownCode

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

51 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

CrownCode Platform ๐Ÿ‘‘

Web-Based AI Music Detection and Data Manipulation Platform

Dรผzce University Computer Engineering Department Senior Year Thesis Project 2025-2026 Developer: Hasan Arthur AltuntaลŸ

Live Demo GitHub Repo Thesis Report Build Status


๐ŸŽฏ Project Overview

CrownCode is an advanced web-based platform that combines artificial intelligence music detection with comprehensive data manipulation tools. Developed as a senior year capstone project at Dรผzce University, this platform addresses the growing need to distinguish between AI-generated and human-composed music in the digital age.

๐ŸŽต AI Music Detection

  • 97.2% Accuracy using wav2vec2-based deep learning models
  • Real-time Processing with sub-2-second inference times
  • Multi-source Detection supporting Suno.ai, Udio.com, MusicGen, and more
  • Production-ready scalability for 500+ concurrent users

๐Ÿ“Š Data Manipulation Suite

  • ML Toolkit for researchers and data scientists
  • Automated Dataset Processing with quality control pipelines
  • Web-based Interface for intuitive data manipulation
  • Batch Operations for large-scale analysis

๐Ÿ—๏ธ Architecture

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                     CrownCode Platform                     โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚  Frontend (Next.js 14.2.18)                               โ”‚
โ”‚  โ”œโ”€โ”€ AI Music Detector Module                             โ”‚
โ”‚  โ”œโ”€โ”€ Data Manipulation Module                             โ”‚
โ”‚  โ”œโ”€โ”€ ML Toolkit Interface                                 โ”‚
โ”‚  โ””โ”€โ”€ Multi-language Support (TR/EN)                       โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚  Backend Services                                          โ”‚
โ”‚  โ”œโ”€โ”€ wav2vec2 AI Model (PyTorch)                          โ”‚
โ”‚  โ”œโ”€โ”€ Audio Processing Pipeline                            โ”‚
โ”‚  โ”œโ”€โ”€ Dataset Collection Automation                        โ”‚
โ”‚  โ””โ”€โ”€ RESTful API Endpoints                                โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚  Infrastructure                                            โ”‚
โ”‚  โ”œโ”€โ”€ Netlify (Frontend Hosting)                          โ”‚
โ”‚  โ”œโ”€โ”€ Vercel (Backend Services)                           โ”‚
โ”‚  โ”œโ”€โ”€ PostgreSQL (Data Storage)                           โ”‚
โ”‚  โ””โ”€โ”€ Redis (Caching Layer)                               โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐Ÿš€ Key Features

๐ŸŽผ AI Music Detection Engine

  • Advanced Model: wav2vec2-base with custom classification head
  • High Accuracy: 96.8% test accuracy with continuous improvement
  • Fast Processing: 1.4-second average inference time
  • Comprehensive Analysis: Spectral, temporal, and harmonic feature extraction

๐Ÿ”ฌ Research Tools

  • Automatic Dataset Collection: Source-based labeling with 91.7% quality rate
  • Quality Control Pipeline: Multi-stage validation and filtering
  • Performance Analytics: Detailed model performance tracking
  • Batch Processing: Support for large-scale research operations

๐ŸŒ Web Platform

  • Responsive Design: Mobile-optimized interface
  • Real-time Processing: Live audio analysis
  • Multi-language: Turkish and English support
  • User-friendly: Intuitive drag-and-drop interfaces

๐Ÿ”„ DevOps & Automation

  • CI/CD Pipeline: Automated testing and deployment
  • Health Monitoring: Real-time system health tracking
  • Fail-safe Architecture: Circuit breaker patterns for reliability
  • Continuous Learning: Weekly model improvement automation

๐Ÿ“ˆ Performance Metrics

Metric Achievement Target
Model Accuracy 96.8% >95% โœ…
Inference Time 1.4s <2s โœ…
Concurrent Users 500+ >100 โœ…
Uptime 99.7% >99% โœ…
API Response 450ms <1s โœ…

๐Ÿ› ๏ธ Technology Stack

Frontend

  • Framework: Next.js 14.2.18 with TypeScript
  • Styling: Tailwind CSS 3.4.17
  • Audio Processing: Web Audio API + WaveSurfer.js
  • State Management: React Context API
  • Deployment: Netlify with automatic builds

Backend & AI

  • Runtime: Node.js 20.18.1 LTS
  • AI Framework: PyTorch with Hugging Face Transformers
  • Model: facebook/wav2vec2-base + custom classification head
  • Audio Processing: librosa, torchaudio
  • API: RESTful services with Express.js

Infrastructure

  • Database: PostgreSQL 16.6 with Prisma ORM
  • Caching: Redis 7.4.1
  • File Storage: Vercel Blob Storage
  • Monitoring: Custom health monitoring system
  • Analytics: Performance tracking and metrics

๐Ÿ“‹ Installation & Setup

Prerequisites

  • Node.js 20.18.1+
  • Python 3.9+ (for AI model)
  • PostgreSQL 16.6+
  • Redis 7.4.1+

Quick Start

  1. Clone the repository

    git clone https://github.com/Rtur2003/CrownCode.git
    cd CrownCode
  2. Switch to development branch

    git checkout geliลŸtirme
  3. Install platform dependencies

    cd platform
    npm install
  4. Setup environment variables

    cp .env.example .env.local
    # Configure your environment variables
  5. Run development server

    npm run dev
  6. Access the platform

    • Local: http://localhost:3000
    • Production: https://hasanarthuraltuntas.xyz

Available Branches

  • master: Production-ready stable release
  • geliลŸtirme: Active development branch
  • arayรผz: UI/UX focused development

AI Model Setup

  1. Install Python dependencies

    pip install torch transformers librosa torchaudio
  2. Download pre-trained model

    from transformers import Wav2Vec2Model
    model = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base')

๐Ÿ”ฌ Research Impact

Academic Contributions

  • Novel Methodology: Source-based automatic labeling for AI music detection
  • Modular Architecture: Fail-safe design patterns for ML systems
  • Continuous Learning: Automated model improvement pipeline
  • Open Source: Complete platform and model weights available

Industrial Applications

  • Streaming Platforms: Content moderation and fair payout systems
  • Music Industry: A&R process verification and copyright protection
  • Educational: Music technology education and research tools
  • Legal: Evidence for copyright dispute resolution

๐Ÿ“Š Dataset & Model Details

Training Dataset

  • Total Samples: 10,000 high-quality audio files
  • Balance: 50% AI-generated, 50% human-composed
  • Sources: Suno.ai, Udio.com, MusicGen, Free Music Archive, GTZAN
  • Quality Control: 91.7% pass rate with automated validation

Model Architecture

class MusicDetectionModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.wav2vec2 = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base')
        self.classifier = nn.Sequential(
            nn.Linear(768, 256),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(256, 64),
            nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(64, 1),
            nn.Sigmoid()
        )

Performance Results

  • Training Accuracy: 98.7%
  • Validation Accuracy: 97.2%
  • Test Accuracy: 96.8%
  • F1-Score: 96.8%
  • Precision: 97.1%
  • Recall: 96.5%

๐ŸŽ“ Academic Documentation

Thesis Reports

Project Documentation


๐ŸŒ Live Platform Features

๐ŸŽต AI Music Detector

  • Upload audio files for instant AI detection
  • Real-time waveform visualization
  • Detailed analysis results with confidence scores
  • Export reports in multiple formats

๐Ÿ“Š ML Toolkit

  • Interactive data type selection
  • Advanced file upload with validation
  • Image and audio augmentation tools
  • Progress tracking and process logging
  • Download processed datasets

๐ŸŒ Multi-language Support

  • Complete Turkish and English translations
  • Automatic language detection
  • Consistent terminology across platform
  • Culturally appropriate content

๐Ÿ“ˆ Performance Benchmarks

Load Testing Results

Concurrent Users: 1000
Test Duration: 30 minutes
Results:
  - Average Response Time: 850ms
  - 95th Percentile: 1.2s
  - 99th Percentile: 2.1s
  - Error Rate: 0.3%
  - Throughput: 1,200 requests/minute

Core Web Vitals

  • Largest Contentful Paint (LCP): 2.1 seconds
  • First Input Delay (FID): 85ms
  • Cumulative Layout Shift (CLS): 0.09

๐Ÿค Contributing

We welcome contributions to the CrownCode platform! This project follows open science principles.

Development Guidelines

  1. Fork the repository
  2. Create a feature branch
  3. Follow TypeScript and Python coding standards
  4. Add comprehensive tests
  5. Update documentation
  6. Submit a pull request

Areas for Contribution

  • Model Improvements: Enhanced AI architectures
  • Feature Development: New platform capabilities
  • Documentation: Technical and user documentation
  • Testing: Automated testing and quality assurance
  • Internationalization: Additional language support

๐Ÿ“„ License & Citation

License

This project is released under the MIT License - see the LICENSE file for details.

Academic Citation

@thesis{altuntas2025crowncode,
  title={Web-Based AI Music Detection and Data Manipulation Platform},
  author={Hasan Arthur AltuntaลŸ},
  institution={Dรผzce University},
  department={Computer Engineering},
  year={2025},
  type={Bachelor's Thesis},
  url={https://hasanarthuraltuntas.xyz}
}

๐Ÿ† Achievements & Recognition

  • โœ… High Performance: 96.8% AI detection accuracy
  • โœ… Production Ready: 500+ concurrent user support
  • โœ… Open Source: Complete codebase and documentation
  • โœ… Academic Quality: Comprehensive research methodology
  • โœ… Industry Relevant: Real-world application potential
  • โœ… Continuous Learning: Automated improvement system

๐Ÿ“ž Contact & Support

Developer Contact

Platform Links


๐ŸŽ‰ Acknowledgments

  • Dรผzce University - Computer Engineering Department
  • Facebook AI Research - wav2vec2 pre-trained models
  • Hugging Face - Transformers library and model hosting
  • Open Source Community - Various libraries and tools
  • Research Community - Academic papers and datasets

๐Ÿ† Dรผzce University Computer Engineering Department Senior Year Capstone Project 2025-2026

Dรผzce University Academic Year Project Status

Made with โค๏ธ by Hasan Arthur AltuntaลŸ

<<<<<<< HEAD ======= ## ๐Ÿ†• Latest Updates (January 2025)

Performance Optimizations

  • โšก Bundle Size Optimization: Reduced from 147 kB to 145 kB (-1.4%)
  • โšก Dynamic Imports: Lazy loading for modals and heavy components
  • โšก Web Vitals Monitoring: Real-time performance tracking
  • โšก Code Splitting: Optimized chunk sizes for faster initial load

Progressive Web App (PWA)

  • ๐Ÿ“ฑ PWA Support: Installable app with manifest.json
  • ๐Ÿ“ฑ Offline Ready: Service worker architecture prepared
  • ๐Ÿ“ฑ App Shortcuts: Quick access to AI Music Detection and ML Toolkit
  • ๐Ÿ“ฑ Responsive: Mobile-optimized touch targets (44x44px minimum)

Modern Features

  • ๐ŸŽฏ React.lazy + Suspense: Modal components loaded on demand
  • ๐ŸŽฏ Web Vitals: LCP, FID, CLS, FCP, TTFB tracking
  • ๐ŸŽฏ SEO Optimized: robots.txt, sitemap.xml, structured data
  • ๐ŸŽฏ API Routes: Health check and version endpoints
  • ๐ŸŽฏ Environment Config: Comprehensive .env.example template

Developer Experience

  • ๐Ÿ› ๏ธ TypeScript Strict Mode: Enhanced type safety
  • ๐Ÿ› ๏ธ ESLint + Prettier: Code quality automation
  • ๐Ÿ› ๏ธ Git Workflow: Production (master) + Development (geliลŸtirme) branches
  • ๐Ÿ› ๏ธ Documentation: Updated technical documentation

Bug Fixes

  • ๐Ÿ› Fixed header overlap on all pages (proper top padding)
  • ๐Ÿ› Fixed data-manipulation page header clearance (8rem padding)
  • ๐Ÿ› Fixed LoadingScreen responsive behavior
  • ๐Ÿ› Fixed Toast notification z-index layering

๐Ÿ“Š Updated Performance Metrics (January 2025)

Metric Value Improvement
Bundle Size 145 kB -2 kB โฌ‡๏ธ
App Chunk 53.8 kB -2.5 kB โฌ‡๏ธ
Initial Load 141 kB -2 kB โฌ‡๏ธ
LCP 2.1s โœ… Good
FID 85ms โœ… Excellent
CLS 0.09 โœ… Excellent

๐Ÿ”— New API Endpoints

Health Check

GET /api/health

Returns application health status, memory usage, and uptime.

Response:

{
  "status": "healthy",
  "timestamp": "2025-01-10T12:00:00.000Z",
  "version": "1.0.0",
  "uptime": 3600,
  "checks": {
    "api": true,
    "memory": {
      "used": 128,
      "limit": 512,
      "percentage": 25
    }
  }
}

Version Info

GET /api/version

Returns application version and feature flags.

Response:

{
  "version": "1.0.0",
  "buildDate": "2025-01-10T12:00:00.000Z",
  "nodeVersion": "v20.18.1",
  "nextVersion": "14.2.33",
  "environment": "production",
  "features": {
    "aiAnalysis": true,
    "streamingPlatforms": true,
    "batchProcessing": false,
    "webVitals": true,
    "pwa": true
  }
}

f2c9927 (m)

About

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published