Skip to content

RetrievalLLMSynthesis combines LLMs with RAG to improve text generation relevance and accuracy. It features a Gradio-based chat system for efficient querying and conversation management, using FAISS for fast text retrieval. Simple tools make text generation and data management easy.

Notifications You must be signed in to change notification settings

Kayce001/RetrievalLLMSynthesis

Repository files navigation

RetrievalLLMSynthesis

欢迎来到 RetrievalLLMSynthesis 项目,本项目结合了大型语言模型(LLM)与检索增强生成(RAG)技术,致力于提高文本生成的相关性和准确性。

项目概览

Complete_Chat_History_Manager.py 这个文件实现了一个基于 Gradio 界面的聊天系统,结合了大型语言模型(LLM)与检索增强生成(RAG)技术,用于高效地生成基于查询的相关答案,并支持对话的创建、保存、加载和删除功能。 gpu_accelerated_sqlite_retrieval.py 这个文件实现了一个基于嵌入向量和 FAISS 检索的系统,用于处理、存储、查询和管理文本数据的嵌入表示,并提供了查询和删除操作的命令行界面。

快速开始

1. 克隆仓库、创建并激活虚拟环境、安装依赖

git clone https://github.com/Kayce001/RetrievalLLMSynthesis.git
cd RetrievalLLMSynthesis

conda create -n rag_env python=3.8
conda activate rag_env

pip install -r requirements.txt

rag作用归纳

1、可以将原本较难阅读的内容让大模型重新整理、讲解,变成容易阅读的格式。

About

RetrievalLLMSynthesis combines LLMs with RAG to improve text generation relevance and accuracy. It features a Gradio-based chat system for efficient querying and conversation management, using FAISS for fast text retrieval. Simple tools make text generation and data management easy.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages