-
Notifications
You must be signed in to change notification settings - Fork 18
Open
Description
Hi Zack!
Thanks for developing RcppML and for providing such clear posts about NMF. I would like to run Linked NMF in my cohort data to obtain shared factors. Before that, I was going through the example at the end of your post of Linked NMF (https://www.zachdebruine.com/post/linked-nmf-for-signal-source-separation/) and realized you updated the aml dataset. I tried the following to get a quick idea of how it works. I obtained the following error:
library(RcppML)
library(singlet)
data(aml)
# make sample names unique
aml$metadata_h$new_names <- paste(aml$metadata_h$samples, aml$metadata_h$category, sep="-")
colnames(aml$data) <- aml$metadata_h$new_names
# make list of datasets
data_examp <- list(
aml$data[, which(grepl( "AML" , colnames(aml$data)))],
aml$data[, which(grepl( "Control" , colnames(aml$data)))]
)
# run linked nmf
lnmf_model <- lnmf(data_examp, k_wh = 3, k_uv = c(2, 2))
Error in getClass(Class, where = topenv(parent.frame())): “lnmf” is not a defined class
Traceback:
1. lnmf(data_examp, k_wh = 3, k_uv = c(2, 2))
2. new("lnmf", w = w, u = u, v = v, h = h, d_wh = d_wh, d_uv = d_uv,
. misc = model@misc)
3. getClass(Class, where = topenv(parent.frame()))
4. stop(gettextf("%s is not a defined class", dQuote(Class)), domain = NA)
These are the package versions
> sessionInfo()
R version 4.1.1 (2021-08-10)
Platform: x86_64-conda-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS/LAPACK: /home/isentis/software/anaconda3/envs/ines_r4.1.1c/lib/libopenblasp-r0.3.21.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=es_ES.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=es_ES.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=es_ES.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=es_ES.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] singlet_0.99.27 dplyr_1.0.9 SeuratObject_4.0.2 Seurat_4.0.5
[5] RcppML_0.5.6
loaded via a namespace (and not attached):
[1] fgsea_1.20.0 Rtsne_0.16 colorspace_2.0-3
[4] deldir_1.0-6 ellipsis_0.3.2 ggridges_0.5.3
[7] IRdisplay_1.0 base64enc_0.1-3 spatstat.data_3.0-1
[10] leiden_0.4.2 listenv_0.8.0 ggrepel_0.9.1
[13] fansi_1.0.3 codetools_0.2-18 splines_4.1.1
[16] knitr_1.40 polyclip_1.10-0 IRkernel_1.1
[19] jsonlite_1.8.0 ica_1.0-3 cluster_2.1.4
[22] rgeos_0.5-9 png_0.1-7 uwot_0.1.10
[25] shiny_1.7.2 sctransform_0.3.4 spatstat.sparse_3.0-1
[28] msigdbr_7.5.1 compiler_4.1.1 httr_1.4.4
[31] assertthat_0.2.1 Matrix_1.4-1 fastmap_1.1.0
[34] lazyeval_0.2.2 limma_3.50.3 cli_3.3.0
[37] later_1.3.0 htmltools_0.5.3 tools_4.1.1
[40] igraph_1.3.4 gtable_0.3.0 glue_1.6.2
[43] RANN_2.6.1 reshape2_1.4.4 fastmatch_1.1-3
[46] Rcpp_1.0.9 scattermore_0.8 vctrs_0.4.1
[49] babelgene_22.9 nlme_3.1-159 lmtest_0.9-40
[52] spatstat.random_3.1-4 xfun_0.32 stringr_1.4.1
[55] globals_0.16.1 mime_0.12 miniUI_0.1.1.1
[58] lifecycle_1.0.1 irlba_2.3.5 goftest_1.2-3
[61] future_1.22.1 MASS_7.3-58.1 zoo_1.8-10
[64] scales_1.2.1 spatstat.core_2.4-4 promises_1.2.0.1
[67] spatstat.utils_3.0-2 parallel_4.1.1 RColorBrewer_1.1-3
[70] reticulate_1.25 pbapply_1.5-0 gridExtra_2.3
[73] ggplot2_3.3.6 rpart_4.1.16 stringi_1.7.8
[76] BiocParallel_1.28.3 repr_1.1.3 rlang_1.0.4
[79] pkgconfig_2.0.3 matrixStats_0.62.0 evaluate_0.16
[82] lattice_0.20-45 ROCR_1.0-11 purrr_0.3.4
[85] tensor_1.5 patchwork_1.1.2 htmlwidgets_1.5.4
[88] cowplot_1.1.1 tidyselect_1.1.2 parallelly_1.32.1
[91] RcppAnnoy_0.0.19 plyr_1.8.7 magrittr_2.0.3
[94] R6_2.5.1 generics_0.1.3 pbdZMQ_0.3-5
[97] DBI_1.1.3 mgcv_1.8-40 pillar_1.8.1
[100] fitdistrplus_1.1-8 sp_1.5-0 survival_3.4-0
[103] abind_1.4-5 tibble_3.1.8 future.apply_1.9.0
[106] crayon_1.5.1 uuid_1.1-0 KernSmooth_2.23-20
[109] utf8_1.2.2 spatstat.geom_3.1-0 plotly_4.10.0
[112] grid_4.1.1 data.table_1.14.2 digest_0.6.29
[115] xtable_1.8-4 tidyr_1.2.0 httpuv_1.6.5
[118] munsell_0.5.0 viridisLite_0.4.1
Thank you!
Metadata
Metadata
Assignees
Labels
No labels