Skip to content
This repository was archived by the owner on Sep 12, 2025. It is now read-only.
This repository was archived by the owner on Sep 12, 2025. It is now read-only.

Error in Prediction of certain Model Families  #122

@manideep-bandaru

Description

@manideep-bandaru

Hi ,

I have generated an google net onnx model for prediction and the model is compatible to predict using in built predictor but i couldn't predict using my customized predictor. From the families listed in https://github.com/microsoft/nn-Meter/tree/dev/dataset-generator/nn_meter/dataset/generator/configs , I am facing this issue with google net , dense net , squeeze net , shufflenetV2 families.

I have attached the required materials for reference : Material

When running the nn-meter predictor command:
nn-meter predict --predictor tflitemicropredictor --predictor-version 1.0 --onnx googlenet_0_deq.onnx
resulted in the following error:

2023-05-05 17:21:23.559308: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
2023-05-05 17:21:23.559335: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
(nn-Meter) checking local kernel predictors at /../nn-Meter/py3.9_env/tflitemicropredictor
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/addrelu.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/dwconv-bn-relu.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/add.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/bnrelu.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/relu.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/global-avgpool.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/bn.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/maxpool.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/hswish.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/fc.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/conv-bn-relu.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/split.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/se.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/avgpool.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/concat.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/channelshuffle.pkl
(nn-Meter) Start latency prediction ...
Traceback (most recent call last):
File "/../nn-Meter/py3.9_env/bin/nn-meter", line 33, in
sys.exit(load_entry_point('nn-meter', 'console_scripts', 'nn-meter')())
File "/../nn-Meter/py3.9_env/nn-Meter/nn_meter/utils/nn_meter_cli/interface.py", line 266, in nn_meter_cli
args.func(args)
File "/../nn-Meter/py3.9_env/nn-Meter/nn_meter/utils/nn_meter_cli/predictor.py", line 56, in apply_latency_predictor_cli
latency = predictor.predict(model, model_type) # in unit of ms
File "/../nn-Meter/py3.9_env/nn-Meter/nn_meter/predictor/nn_meter_predictor.py", line 113, in predict
py = nn_predict(self.kernel_predictors, self.kd.get_kernels()) # in unit of ms
File "/../nn-Meter/py3.9_env/nn-Meter/nn_meter/predictor/prediction/predict_by_kernel.py", line 54, in nn_predict
py = predict_model(features, predictors)
File "/../nn-Meter/py3.9_env/nn-Meter/nn_meter/predictor/prediction/predict_by_kernel.py", line 39, in predict_model
pys = pred.predict(dicts[kernel]) # in unit of ms
File "/../nn-Meter/py3.9_env/lib/python3.9/site-packages/sklearn/ensemble/_forest.py", line 981, in predict
X = self._validate_X_predict(X)
File "/../nn-Meter/py3.9_env/lib/python3.9/site-packages/sklearn/ensemble/_forest.py", line 602, in _validate_X_predict
X = self._validate_data(X, dtype=DTYPE, accept_sparse="csr", reset=False)
File "/../nn-Meter/py3.9_env/lib/python3.9/site-packages/sklearn/base.py", line 588, in _validate_data
self._check_n_features(X, reset=reset)
File "/../nn-Meter/py3.9_env/lib/python3.9/site-packages/sklearn/base.py", line 389, in _check_n_features
raise ValueError(
ValueError: X has 6 features, but RandomForestRegressor is expecting 5 features as input.

Hope you reply back soon.
Thank you.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions