|
| 1 | +""" |
| 2 | +3-Agent system to first extract a few pieces of info, then chat with user. |
| 3 | +
|
| 4 | +- Assistant: helps user answer questions about a Book. But first it needs to |
| 5 | + extract some information from a document about the Book, using Extractor. |
| 6 | +- Extractor: generates questions about the Book document, one by one, |
| 7 | + then returns all info to Assistant using a tool message. |
| 8 | +- DocAgent: answers the questions generated by Extractor, based on the Book doc. |
| 9 | +
|
| 10 | +Run like this: |
| 11 | +
|
| 12 | +python3 examples/chainlit/extract-then-chat.py |
| 13 | +
|
| 14 | +""" |
| 15 | +from langroid import ChatDocument |
| 16 | +from pydantic import BaseModel |
| 17 | +from typing import List |
| 18 | +import os |
| 19 | +from fire import Fire |
| 20 | + |
| 21 | +from rich import print |
| 22 | +from rich.prompt import Prompt |
| 23 | +import langroid as lr |
| 24 | +import langroid.language_models as lm |
| 25 | +from langroid.mytypes import Entity |
| 26 | +from langroid.agent.special.doc_chat_agent import DocChatAgent, DocChatAgentConfig |
| 27 | +from langroid.parsing.parser import ParsingConfig |
| 28 | +from langroid.agent.chat_agent import ChatAgent, ChatAgentConfig |
| 29 | +from langroid.agent.task import Task |
| 30 | +from langroid.agent.tool_message import ToolMessage |
| 31 | +from langroid.utils.configuration import set_global, Settings |
| 32 | +from langroid.utils.constants import NO_ANSWER, DONE, SEND_TO, PASS |
| 33 | + |
| 34 | +from textwrap import dedent |
| 35 | +from dotenv import load_dotenv |
| 36 | + |
| 37 | +os.environ["TOKENIZERS_PARALLELISM"] = "false" |
| 38 | + |
| 39 | + |
| 40 | +class BookInfo(BaseModel): |
| 41 | + title: str |
| 42 | + author: str |
| 43 | + year: int |
| 44 | + |
| 45 | + |
| 46 | +class BookInfoTool(ToolMessage): |
| 47 | + request: str = "book_info" |
| 48 | + purpose: str = "Collect <info> about Books" |
| 49 | + |
| 50 | + info: List[BookInfo] |
| 51 | + |
| 52 | + def handle(self) -> str: |
| 53 | + """Exit task and pass tool to parent""" |
| 54 | + return DONE + " " + PASS |
| 55 | + |
| 56 | + @classmethod |
| 57 | + def examples(cls) -> List["BookInfoTool"]: |
| 58 | + return [ |
| 59 | + cls( |
| 60 | + info=[ |
| 61 | + BookInfo(title="The Hobbit", author="J.R.R. Tolkien", year=1937), |
| 62 | + BookInfo( |
| 63 | + title="The Great Gatsby", |
| 64 | + author="F. Scott Fitzgerald", |
| 65 | + year=1925, |
| 66 | + ), |
| 67 | + ] |
| 68 | + ) |
| 69 | + ] |
| 70 | + |
| 71 | + |
| 72 | +class Assistant(ChatAgent): |
| 73 | + def book_info(self, msg: BookInfoTool) -> str: |
| 74 | + # convert info to NON-JSON so it doesn't look like a tool, |
| 75 | + # and insert routing so that the Assistan't LLM responds to it, not user. |
| 76 | + info_str = str(msg.info).replace("{", "[").replace("}", "]") |
| 77 | + return f"""{SEND_TO}LLM |
| 78 | + Below is INFO about various books, you received from the Extractor. |
| 79 | + Now ask the user what help they need, and respond ONLY based on this INFO. |
| 80 | + |
| 81 | + INFO: |
| 82 | + {info_str} |
| 83 | + """ |
| 84 | + |
| 85 | + |
| 86 | +class Extractor(ChatAgent): |
| 87 | + def handle_message_fallback( |
| 88 | + self, msg: str | ChatDocument |
| 89 | + ) -> str | ChatDocument | None: |
| 90 | + """Nudge LLM when it fails to use book_info correctly""" |
| 91 | + if self.has_tool_message_attempt(msg): |
| 92 | + return """ |
| 93 | + You must use the "book_info" tool to present the info. |
| 94 | + You either forgot to use it, or you used it with the wrong format. |
| 95 | + Make sure all fields are filled out and pay attention to the |
| 96 | + required types of the fields. |
| 97 | + """ |
| 98 | + |
| 99 | + |
| 100 | +def chat( |
| 101 | + model: str = "", # or, e.g., "ollma/mistral:7b-instruct-v0.2-q8_0" |
| 102 | + debug: bool = False, |
| 103 | + no_cache: bool = False, # whether to disablue using cached LLM responses |
| 104 | +): |
| 105 | + print( |
| 106 | + """ |
| 107 | + Hello! I am your book info helper. |
| 108 | + First I will get info about some books |
| 109 | + """ |
| 110 | + ) |
| 111 | + |
| 112 | + load_dotenv() |
| 113 | + |
| 114 | + set_global( |
| 115 | + Settings( |
| 116 | + debug=debug, |
| 117 | + cache=not no_cache, # disables cache lookup; set to True to use cache |
| 118 | + ) |
| 119 | + ) |
| 120 | + |
| 121 | + llm_cfg = lm.OpenAIGPTConfig( |
| 122 | + # or, e.g. "ollama/mistral:7b-instruct-v0.2-q8_0" but result may be brittle |
| 123 | + chat_model=model or lm.OpenAIChatModel.GPT4_TURBO, |
| 124 | + chat_context_length=16_000, # adjust based on model |
| 125 | + ) |
| 126 | + doc_agent = DocChatAgent( |
| 127 | + DocChatAgentConfig( |
| 128 | + llm=llm_cfg, |
| 129 | + n_neighbor_chunks=2, |
| 130 | + parsing=ParsingConfig( |
| 131 | + chunk_size=50, |
| 132 | + overlap=10, |
| 133 | + n_similar_docs=3, |
| 134 | + n_neighbor_ids=4, |
| 135 | + ), |
| 136 | + vecdb=lr.vector_store.LanceDBConfig( |
| 137 | + collection_name="book_info", |
| 138 | + replace_collection=True, |
| 139 | + storage_path=".lancedb/data/", |
| 140 | + embedding=lr.embedding_models.SentenceTransformerEmbeddingsConfig( |
| 141 | + model_type="sentence-transformer", |
| 142 | + model_name="BAAI/bge-large-en-v1.5", |
| 143 | + ), |
| 144 | + ), |
| 145 | + cross_encoder_reranking_model="", |
| 146 | + ) |
| 147 | + ) |
| 148 | + doc_agent.ingest_doc_paths(["examples/docqa/books.txt"]) |
| 149 | + doc_task = Task( |
| 150 | + doc_agent, |
| 151 | + name="DocAgent", |
| 152 | + done_if_no_response=[Entity.LLM], # done if null response from LLM |
| 153 | + done_if_response=[Entity.LLM], # done if non-null response from LLM |
| 154 | + # Don't use system_message here since it will override doc chat agent's |
| 155 | + # default system message |
| 156 | + ) |
| 157 | + |
| 158 | + extractor_agent = Extractor( |
| 159 | + ChatAgentConfig( |
| 160 | + llm=llm_cfg, |
| 161 | + vecdb=None, |
| 162 | + ) |
| 163 | + ) |
| 164 | + extractor_agent.enable_message(BookInfoTool) |
| 165 | + |
| 166 | + extractor_task = Task( |
| 167 | + extractor_agent, |
| 168 | + name="Extractor", |
| 169 | + interactive=False, # set to True to slow it down (hit enter to progress) |
| 170 | + system_message=f""" |
| 171 | + You are an expert at understanding JSON function/tool specifications. |
| 172 | + You must extract information about various books from a document, |
| 173 | + to finally present the info using the `book_info` tool/function, |
| 174 | + but you do not have access to the document. |
| 175 | + I can help with your questions about the document. |
| 176 | + You have to ask questions in these steps: |
| 177 | + 1. ask which books are in the document |
| 178 | + 2. for each book, ask the various pieces of info you need. |
| 179 | + |
| 180 | + If I am unable to answer your question initially, try asking differently, |
| 181 | + and if I am still unable to answer after 3 tries, |
| 182 | + fill in {NO_ANSWER} for that field. |
| 183 | + Think step by step. |
| 184 | + |
| 185 | + Do not explain yourself, or say any extraneous things. |
| 186 | + When you receive the answer, then ask for the next field, and so on. |
| 187 | + """, |
| 188 | + ) |
| 189 | + |
| 190 | + assistant_agent = Assistant( |
| 191 | + ChatAgentConfig( |
| 192 | + llm=llm_cfg, |
| 193 | + vecdb=None, |
| 194 | + ) |
| 195 | + ) |
| 196 | + assistant_agent.enable_message(lr.agent.tools.RecipientTool) |
| 197 | + # enable assistant to HANDLE the book_info tool but not USE it |
| 198 | + assistant_agent.enable_message(BookInfoTool, use=False, handle=True) |
| 199 | + assistant_task = Task( |
| 200 | + assistant_agent, |
| 201 | + name="Assistant", |
| 202 | + interactive=True, |
| 203 | + system_message=f""" |
| 204 | + You are a helpful librarian, answering my (the user) questions about |
| 205 | + books described in a certain document, and you do NOT know which |
| 206 | + books are in the document. |
| 207 | + |
| 208 | + FIRST you need to ask the "Extractor" to collect information |
| 209 | + about various books that are in a certain document. Address your request to the |
| 210 | + Extractor using the 'recipient_message' tool/function. |
| 211 | + |
| 212 | + Once you receive the information, you should then ask me (the user) |
| 213 | + what I need help with. |
| 214 | + """, |
| 215 | + ) |
| 216 | + |
| 217 | + assistant_task.add_sub_task([extractor_task]) |
| 218 | + extractor_task.add_sub_task([doc_task]) |
| 219 | + |
| 220 | + # must use run() instead of run_async() because DocChatAgent |
| 221 | + # does not have an async llm_response method |
| 222 | + assistant_task.run() |
| 223 | + |
| 224 | + |
| 225 | +if __name__ == "__main__": |
| 226 | + Fire(chat) |
0 commit comments