Skip to content

The AlgoQuant Backtester & Signal Engine is an end-to-end DevMLOps platform for developing, validating, and deploying algorithmic trading strategies.

License

Notifications You must be signed in to change notification settings

Trojan3877/Algo-Quant-Backtester-

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

74 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿง ๐Ÿ“ˆ Algo-Quant-Backtester

A Professional, Modular Algorithmic Trading Backtesting Engine
Built by Corey Leath (GitHub: Trojan3877)
Targeting Big Tech & Big AI ML/AI Engineering Internships



๐Ÿš€ Overview

Algo-Quant-Backtester is a production-grade, modular algorithmic trading engine designed to mimic the workflow of real quant research and ML/AI engineering teams.

The project supports:

  • โœ” Traditional indicator-based strategies
  • โœ” Machine Learning strategies
  • โœ” Feature engineering utilities
  • โœ” Full test suite + CI/CD
  • โœ” MLFlow experiment tracking
  • โœ” Dockerized execution
  • โœ” Clean, scalable architecture

This repository demonstrates L5/L6 engineering competencies, including:

  • Reproducible pipelines
  • Modular code design
  • Machine learning integration
  • Automated testing
  • Containerization
  • Professional-level documentation

๐Ÿ† Badges

Build Status Python MLFlow Backtesting Docker Coverage


๐Ÿงฉ Architecture

โ”œโ”€โ”€ src โ”‚ โ”œโ”€โ”€ strategies/ โ”‚ โ”‚ โ”œโ”€โ”€ sma_strategy.py โ”‚ โ”‚ โ”œโ”€โ”€ rsi_strategy.py โ”‚ โ”‚ โ”œโ”€โ”€ macd_strategy.py โ”‚ โ”‚ โ””โ”€โ”€ ml_strategy.py โ”‚ โ”œโ”€โ”€ indicators/ โ”‚ โ”‚ โ””โ”€โ”€ (EMA, SMA, RSI, MACD) โ”‚ โ”œโ”€โ”€ metrics/ โ”‚ โ”‚ โ””โ”€โ”€ (Sharpe, Sortino, Win Rate, etc.) โ”‚ โ”œโ”€โ”€ data/ โ”‚ โ”‚ โ””โ”€โ”€ data_loader.py โ”‚ โ”œโ”€โ”€ backtester.py โ”‚ โ”œโ”€โ”€ utils.py โ”‚ โ””โ”€โ”€ plotter.py โ”œโ”€โ”€ tests/ โ”œโ”€โ”€ Dockerfile โ”œโ”€โ”€ requirements.txt โ””โ”€โ”€ README.md


๐Ÿ’ก Key Features

๐Ÿ“Š Multiple Strategy Types

  • SMA crossover
  • RSI reversion
  • MACD trend strategy
  • ML model-based strategies (XGBoost, LightGBM, etc.)

โš™๏ธ Modular & Extensible

Every strategy lives in its own class and can be plugged into the backtester easily.

๐Ÿงฎ Quant Indicator Suite

  • SMA
  • EMA
  • RSI
  • MACD

๐Ÿ“ˆ Performance Metrics

  • Sharpe Ratio
  • Sortino Ratio
  • Max Drawdown
  • Cumulative Return
  • Win Rate

๐Ÿ“ฆ Dockerized for Production

๐Ÿงช Full Test Suite with CI/CD

  • Indicators
  • Strategies
  • Backtester
  • Utils
  • Data loader

๐Ÿ“š MLFlow Integration

Track:

  • hyperparameters
  • model versions
  • performance metrics
  • experiment comparisons

โš™๏ธ Installation

git clone https://github.com/Trojan3877/Algo-Quant-Backtester-
cd Algo-Quant-Backtester-
pip install -r requirements.txt

## Quickstart

```bash
# Clone & bootstrap
git clone https://github.com/Trojan3877/AlgoQuant-Backtester-Signal-Engine.git
cd AlgoQuant-Backtester-Signal-Engine

# Setup local environment
cp .env.example .env
make deps
dvc pull
scripts/setup_local.sh

# Run backtest
make backtest

# Deploy locally with Docker Compose
docker-compose up -d

# Deploy to Kubernetes (dev)
kubectl apply -f k8s/
helm install algoquant-backtester helm/algoquant-backtester

# Full prod deploy
make deploy






# Algo-Quant-Backtester-
The AlgoQuant Backtester & Signal Engine is an end-to-end DevMLOps platform for developing, validating, and deploying algorithmic trading strategies. 

# AlgoQuant Backtester & Signal Engine

A production-grade DevMLOps platform for developing, validating, and deploying algorithmic trading strategies.  
Ingests market data, engineers features, trains quantitative and ML-driven models, backtests strategies, and serves live trading signalsโ€”all automated with modern MLOps tooling.

## Directory Structure



## Next Steps

1. Populate each module in `src/`  
2. Configure DVC for data and model tracking  
3. Set up CI/CD with GitHub Actions  
4. Define Kubernetes manifests and Helm chart  
5. Automate deployment with Ansible  
6. Implement monitoring with Prometheus & Grafana  
7. Provision cloud infra with Terraform  

_Developed by Corey Leath (Trojan3877)_





git add README.md
git commit -m "Add README.md with project overview and structure"
git push













AlgoQuant-Backtester-Signal-Engine/
โ”œโ”€โ”€ .github/
โ”‚   โ””โ”€โ”€ workflows/               # CI: lint, tests, performance gates
โ”‚       โ””โ”€โ”€ ci.yml
โ”œโ”€โ”€ ansible/                     # Configuration management
โ”‚   โ”œโ”€โ”€ inventories/
โ”‚   โ”‚   โ”œโ”€โ”€ dev.ini
โ”‚   โ”‚   โ””โ”€โ”€ prod.ini
โ”‚   โ””โ”€โ”€ playbook.yaml
โ”œโ”€โ”€ k8s/                         # Kubernetes manifests
โ”‚   โ”œโ”€โ”€ deployment.yaml
โ”‚   โ”œโ”€โ”€ service.yaml
โ”‚   โ””โ”€โ”€ hpa.yaml
โ”œโ”€โ”€ terraform/                   # Cloud infra (e.g. AWS, GCP)
โ”‚   โ””โ”€โ”€ main.tf
โ”œโ”€โ”€ data/                        # DVC-tracked raw + processed
โ”‚   โ”œโ”€โ”€ raw/                     # e.g. downloaded from Kaggle
โ”‚   โ””โ”€โ”€ processed/
โ”œโ”€โ”€ src/
โ”‚   โ”œโ”€โ”€ ingestion/               # Ingest Snowflake & streaming
โ”‚   โ”‚   โ””โ”€โ”€ ingest.py
โ”‚   โ”œโ”€โ”€ features/                # Feature engineering & labeling
โ”‚   โ”‚   โ””โ”€โ”€ build_features.py
โ”‚   โ”œโ”€โ”€ models/                  # Strategy models (TensorFlow & PyTorch)
โ”‚   โ”‚   โ”œโ”€โ”€ tf_signal.py
โ”‚   โ”‚   โ””โ”€โ”€ torch_rl.py
โ”‚   โ”œโ”€โ”€ backtest/                # Vectorized backtester & walk-forward
โ”‚   โ”‚   โ””โ”€โ”€ backtest.py
โ”‚   โ”œโ”€โ”€ serve/                   # Real-time signal API (FastAPI)
โ”‚   โ”‚   โ””โ”€โ”€ app.py
โ”‚   โ””โ”€โ”€ utils/                   # Common helpers (logging, config)
โ”‚       โ””โ”€โ”€ config.py
โ”œโ”€โ”€ notebooks/                   # Kaggle-style EDA & prototyping
โ”‚   โ””โ”€โ”€ exploration.ipynb
โ”œโ”€โ”€ Dockerfile                   # Container for API + backtester
โ”œโ”€โ”€ docker-compose.yml           # Local dev stack (API, monitoring)
โ”œโ”€โ”€ Makefile                     # `make deps`, `make lint`, `make test`, `make deploy`
โ”œโ”€โ”€ requirements.txt             # Python 3 deps
โ”œโ”€โ”€ dvc.yaml                     # DVC pipeline stages
โ”œโ”€โ”€ CHANGELOG.md
โ”œโ”€โ”€ CONTRIBUTING.md
โ””โ”€โ”€ README.md

About

The AlgoQuant Backtester & Signal Engine is an end-to-end DevMLOps platform for developing, validating, and deploying algorithmic trading strategies.

Resources

License

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published